Abstract

Ultrasonic surface rolling process (USRP) is a novel surface severe plastic deformation (SPD) method that integrates ultrasonic impact peening (UIP) and deep rolling (DR) to enhance the surface integrity and surface mechanical properties of engineering materials. USRP can induce gradient nanostructured surface (GNS) layers on the substrate, providing superior mechanical properties, thus preventing premature material failure. Herein, a comprehensive overview of current-state-of-the art USRP is provided. More specifically, the effect of the USRP on a broad range of materials exclusively used for aerospace, automotive, nuclear, and chemical industries is explained. Furthermore, the effect of USRP on different mechanical properties, such as hardness, tensile, fatigue, wear resistance, residual stress, corrosion resistance, and surface roughness are summarized. In addition, the effect of USRP on grain refinement and the formation of gradient microstructure is discussed. Finally, this study elucidates the application and recent advances of the USRP process.

Highlights

  • The surface integrity of engineering material is a crucial factor that affects the service life of materials in the designated field of applications

  • 0.1 MPa; Wolfram Carbide; 14 mm; 28 kHz; 7 μm Significant ultra-fine grains Improved surface microhardness residual compressive stress (RCS) of −1099 MPa was observed on the surface

  • Ultrasonic surface rolling process (USRP) is a promising method of severe plastic deformation (SPD) that can provide superior surface mechanical properties and surface integrity with reduced surface roughness compared to other methods of SPD

Read more

Summary

Introduction

The surface integrity of engineering material is a crucial factor that affects the service life of materials in the designated field of applications. Researchers have used SPD by shot peening [2,3], severe shot peening (SSP) [4,5], ultrasonic impact peening [6,7], ultrasonic shot peening (USP) [8,9], laser shock peening [10,11], direct and indirect laser shock surface patterning (LSSP) [12,13], surface mechanical attrition treatment (SMAT) [14,15], and deep cold rolling (DCR) [16] These surface SPD techniques could induce residual compressive stress (RCS) and closure of existing microcracks and microcavities on the surface [17–20]. RReesseeaarrcchheerrss hhaavvee rreevveeaalleedd tthhaatt mmaannyy mmaatteerriiaallss tthhaatt aarree ssuucccceessssffuullllyy pprroocceesssseedd uussiinngg UUSSRRPP iinncclluuddee bbuutt aarree nnoott lliimmiitteedd ttoo ddiiffffeerreenntt sstteeeell ggrraaddeess [[2255––3300]],, ttiittaanniiuumm aallllooyyss [[3311––3355]],, aalluummiinnuumm aallllooyyss [[3366,,3377]],, aanndd mmaaggnneessiiuumm aallllooyyss [[3388––4400]]. The. In addition, the ultrasonic vibration during the USRP process allows easy ent4royf 3o2f the lubricant between the rolling tip and specimen surface. The lubrilcuabnrticaalsnot aalcstos aasctas caosoalacnotolaanndt aimndpriomvpersotvheesatehsethaeestitchseotifcsthoef stuherfsaucerf.aSciem. uSilmtanueltoaunseloyu, sthlye, thhieghh-igfrhe-qfrueeqnuceynicmy pimacptaicmt ipmropvroesveths ethpelapslatisctidcedfeofromrmataiotinonabaibliiltiyty, ,wwhhicichhpprreevveennttss tthhee mmaa-tteerriiaall ffrroomm ccrraacckkiinngg aanndd pprroommootteesstthheerreeccoonnssttrruuccttiioonnoofftthheemmaatteerriiaallssttrruuccttuurree[[4477]]..IInntthhiiss mmaannnneerr,,UUSSRRPPccaannpprroovviiddeessuuppeerriioorrssuurrffaacceeiinntteeggrriittyyaannddssuurrffaacceemmeecchhaannicicaallpprrooppeerrtiteiess

Microstructural Development durrinng UUSSRRPP
Ni Alloys
Al Alloys
Mg Alloys
Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call