Abstract

The characterization of surface cracks on complex geometries using surface waves is investigated numerically and experimentally. The specimen geometry is implemented in a finite difference code by approximation of the contour using a Cartesian grid. In the experiments the out-of-plane surface displacement is measured by means of a heterodyne laser interferometer. Good agreement is shown by comparison of the calculated out-of-plane displacement with experimental results for both cracked and non-cracked specimens. The crack depth is measured down to a size of 0.7 times the surface wavelength using a time delay approach. The many Rayleigh pulses propagating after the crack can be separated from the other modes by a filtering procedure based on the surface wave propagation velocity. Only a detailed analysis of the scattering phenomenon using the simulation allows an identification of the transmitted pulse required for crack depth measurement. Application of the method to a specimen with a real fatigue crack shows a systematical error possibly due to the inclined crack profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.