Abstract
Abstract The present study is devoted to ultrasonic characterization of Si-oil based magneto-rheological (MR) fluid. Initially, the structural, morphological and magnetic properties of carbonyl iron powder have been carried out by its X-ray diffraction (XRD), scanning electron microscope (SEM), SEM-energy dispersive X-ray analyser (SEM-EDX) and vibrating sample magnetometer (VSM) measurements. The cubic structure with lattice parameter 2.841 Å of powdered material is confirmed by XRD study while spherical particle content is confirmed by SEM measurement. The VSM measurement of powder endorses the smooth magnetization and demagnetization with no remnance and coercivity. The rheological and ultrasonic properties are measured for pure Si-oil and four synthesized MR fluids having 10–40 wt% of carbonyl iron powder. The density and viscosity of synthesized MR fluid is found to enhance with weight percentage of carbonyl iron powder. In absence of magnetic field, the longitudinal ultrasonic velocity is found to decay with temperature and concentration. In presence of magnetic field, the longitudinal ultrasonic velocity is found to enhance while velocity measured at transverse magnetic field is found to decay for each MR fluid. The change in ultrasonic velocity with concentration at fixed temperature or magnetic field resembles the magnetization characteristics of disperse powder in MR fluid. The study opens a new dimension for its characterization through ultrasonic non-destructive technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.