Abstract

All-inorganic and low-cost quantum-dot light-emitting diodes (QLEDs) are always desired considering the easy processing and outstanding physical and chemical stability of inorganic oxides. Herein, efficient all-inorganic QLEDs are demonstrated by using NiO and ZnO as the charge transport layers fabricated via ultrasonic spray processes. Excellent device performance is achieved thanks to the introduction of an Al2O3 interlayer between quantum dots (QDs) and an amorphous NiO layer. Transient photoluminescence and electricity measurements indicate that the Al2O3 layer can suppress the exciton quenching induced by the NiO layer and reduce the electron leakage from QDs to NiO. In consequence, relative to that of a device without an Al2O3 layer, the efficiency of an Al2O3-containing device is enhanced by a factor of 539%, increasing from 3.8 cd/A to 20.5 cd/A, and it exhibits color-saturated green emission (peak at 530 nm) and high luminescence (>20 000 cd/m2). These are the best performances for all-inorganic QLEDs reported to date. Meanwhile, it is demonstrated that ultrasonic spray is a feasible and cost-effective technology to construct efficient all-inorganic QLEDs. We anticipate that these results will spur the progress toward realization of high performance and mass production of all-inorganic QLEDs as a platform for QD-based full-color displays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.