Abstract

Under high in situ stresses, the excavation of underground openings generally causes the creation of a disturbed (EdZ: Excavation disturbed Zone) and/or damaged (EDZ: Excavation Damaged Zone) zone, resulting from the initiation and growth of cracks and fractures and from the pre-existing stress redistribution. The EdZ or EDZ changes the mechanical and hydromechanical properties which in return, constitute a potential risk for the performance of the geologic and/or engineered structures in the context of waste underground storage. Ultrasonic experiments have been implemented to characterize the EDZ extension around drifts and its evolution in time according to the structural support type (soft or rigid) and the environmental conditions. Those studies consist of two experimental components: (1) the prior auscultation of the floor and sidewalls of the gallery by ultrasonic transmission tomography, (2) the monitoring of the time-dependant evolution of EDZ and the analysis of measurable changes in the propagation of ultrasonic waves in the medium term. A code for computing these continuous in situ velocity measurements into the elastic has been developed. Then, the five dynamic elastic constants for the assumed transverse isotropic character of the rock are derived as a function of time and the distance from the drift wall. Performed a few months after the excavation of the galleries, the tomography shows that ultrasonic velocities are higher in the orthoradial direction (both in the concrete support and rock). This velocity field highlights clearly the damaged zone and induced stress shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.