Abstract

Abstract In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency, an ultrasonic scalpel based on fusiform phononic crystals (PnCs) is proposed. An accurate theoretical model is constructed, which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance. Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint, which can suppress the corresponding vibrational modes. The vibration characteristics (vibration mode, frequency, and displacement distribution) of the ultrasonic scalpel are analyzed, and the validity of the electromechanical equivalent circuit method is verified. The results indicate that other vibration modes near the working frequency can be isolated. In addition, blades based on fusiform PnCs have a function akin to that of the horn, which enables displacement amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.