Abstract

The paper presents recent results of ultrasonic investigation of Sn2P2S6 family ferroelectric crystals and their solid solutions in the temperature range 100-300 K. It was shown that in Sn2P2(S,Se)6 crystals the critical ultrasonic velocity slowing down for longitudinal waves propagating along main crystallographic directions is quite sharp and large. The relative change of longitudinal ultrasonic velocity along z-axis at the phase transition gradually increased from 10 % in pure Sn2P2S6 till 25 % for sample with 0.4 content of Se. Such large velocity change causes the large ultrasonic attenuation anomaly. The increase of relaxation time: τ=τ0/(TC-T) leads to the increase of attenuation. Prefactor τ0 was shown to be very small and the critical attenuation anomaly arises in the narrow temperature range close to phase transition. In the 0.4 Se sample the phase transition is of the first order because small thermal hysteresis exists. The ultrasonic velocity behaviour in the ferroelectric phase was described using Landau theory and free energy expansion including sixth order terms. For (Sn,Pb)2P2S6 system the critical ultrasonic anomalies were smaller and the phase transition temperature substantially decreased (for 0.45 Pb sample the phase transition point was at Tc =140 K). The ultrasonic anomalies at phase transition in (PbxSn1-x)2P2S6 have large hysteresis showing that transition is of the first order, far from the critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.