Abstract
Advancements in manufacturing processes, such as metal 3D printing, are deeply reliant on our understanding of the resulting internal features and microstructures that dictate material behavior. Microstructure characterization is often relegated to techniques that require extensive sample sectioning and surface preparation, which are inherently limited to a small portion of the bulk material. In this presentation, I will show how elastic wave propagation methods (namely, ultrasonic testing) can be combined with physics-based models to extract microstructural parameters in fit-for-service parts. Example results are given for binder jet printed metals (namely, stainless steel 316 and SS316 infiltrated with bronze) where microstructure is characterized over large volumes nondestructively. These methods are correlated to both destructive metrics of microscale features and mechanical properties, which are linked to processing conditions and sample geometry. Finally, I will provide a broader outlook for the impact these techniques may have on the development and implementation of quality assurance protocols for additively manufactured parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.