Abstract

This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call