Abstract
Brain imaging technology is widely used in the diagnosis of brain diseases. Computed tomography and magnetic resonance imaging are the most common imaging modalities used for clinical brain imaging, whereas ultrasound is rarely used because the skull substantially reduces the incident energy of ultrasonic waves to levels too low for imaging. However, remarkable developments of novel technologies in ultrasound brain imaging have been achieved recently, including Doppler-based imaging, contrast agent imaging, ultrasound elastography, and phase compensation imaging. Doppler-based imaging, including ultrafast Doppler imaging and functional ultrasound, is able to obtain reliable cerebral blood volume changes and has the best penetration depth and a better spatiotemporal resolution. Contrast agent brain imaging, including ultrasound localization microscopy, can obtain super spatial resolution vasculature maps over a large region within a few minutes of acquisition and reconstruction time. Ultrasound elastography reflects the stiffness of brain tissues. Phase correction imaging, such as time reversal mirror and spatiotemporal inverse filter, aims at focusing smoothly in the skull. These methods have been widely performed on animal models, newborn children, and adults in preclinical studies, with results demonstrating great potential in the diagnosis and treatment of brain diseases. This review discusses the ultrasound methods developed in recent years for brain imaging and highlights the promising future they hold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.