Abstract

Based on ultrasonic sound pressure attenuation, the ultrasonic pulse transmission method is proposed for measuring gas holdup in gas-liquid two-phase bubbly flows. Two ultrasonic transducers are positioned on opposite sides of a vertical upward pipe with an inner diameter of 20 mm. To obtain the relationship between ultrasonic attenuation and gas holdup, the mean value of the first pulse sequence of ultrasonic signals is first extracted as the measured signal. We used the quick closing valve method to obtain the gas holdup as the set value. Second, the relationship between the gas holdup and measured ultrasonic signals was established. The experiment result shows that the ultrasonic attenuation rate is significantly different at low and high gas holdups, as indicated by the bubble size images with a high-speed camera. We also investigated the ultrasonic field distribution using numerical simulation. The bubble size has an important effect on the ultrasonic attenuation coefficient, which provides a further physical explanation and reference for the experimental phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call