Abstract

We have used ultrasonic velocity and attenuation measurements to study the phase separation of3He/4He mixtures confined in a silica aerogel with a porosity of 87%. We used both shear and longitudinal sound and varied the frequency between 4 and 20 MHz. The superfluid transition is accompanied by a velocity increase due to decoupling and by a critical attenuation peak which increases with frequency. At the phase separation there are changes in the velocity and attenuation, and hysteresis on thermal cycling. We show some recent results and discuss how they relate to the phase diagram inferred from torsional oscillator and heat capacity measurements on helium mixtures in aerogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.