Abstract
Certain organic crystals are found to possess high non-linear optical coefficients, often one to two orders of magnitude higher than those of the well-known inorganic non-linear optical materials. Benzoyl glycine is one such crystal whose optical second-harmonic generation efficiency is much higher than that of potassium dihydrogen phosphate. Single crystals of benzoyl glycine are grown by solvent evaporation technique usingN, N-dimethyl formamide as the solvent. All the nine second-order elastic stiffness constants of this orthorhombic crystal are determined from ultrasonic wave velocity measurements employing the pulse echo overlap technique. The anisotropy of elastic wave propagation in this crystal is demonstrated by plotting the phase velocity, slowness, Young’s modulus and linear compressibility surfaces along symmetry planes. The volume compressibility, bulk modulus and relevant Poisson’s ratios are also determined. Variation of the diagonal elastic stiffness constants with temperature over a limited range are measured and reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.