Abstract

Self-loosening of bolted joints in response to vibration can lead to the catastrophic failure of a range of engineering components and structures. Many techniques employed to study this phenomenon focus on directly measuring the pre-load remaining in the bolt itself, and offer little insight into the behaviour of the clamped interface. In this study, a non-intrusive ultrasonic reflection-based technique is used to first characterize interface pressure in the joint, and then determine the rate at which relaxation occurs. A key advantage of the technique is that it does not require the modification of the contact conditions, and rather utilizes the spring-like behaviour of a rough surface interface when subject to ultrasonic excitation. A series of different bolt torques were investigated, along with the inclusion of both plain and spring washers under the bolt head. All test samples were subjected to an oscillating fixed–displacement vibration cycle. An initial rapid reduction in interface clamping pressure was observed, followed by a more steady-state period. Increasing bolt torque was seen to enhance joint integrity, whereas both the plain and spring washers showed little improvement. The spring washer was observed to extend the secondary steady-state phase of loosening, though as the majority of pre-load was removed prior to this period any change was largely unbeneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call