Abstract

As the thermonuclear fuel container, the inertial confinement fusion (ICF) microspheres must be detected before the ICF experiment to maximize the profits of fusion reactions. However, in the current detection method, the ICF microsphere is in direct contact with the measurement platform, resulting in the ICF microsphere surface being easily damaged during the detection process. In this paper, an ultrasonic manipulation method is proposed, realizing non-destructive, high-precision, and high-efficient manipulation of the ICF microsphere by switching the two acoustic fields produced in the liquid. When detecting the ICF microsphere, the first acoustic field (1st AF) accurately traps the microsphere in the acoustic field center to achieve its precise positioning. And when the ICF microsphere is failed to pass the detection, it is transferred out of the microscope measurement area by switching to the second acoustic field (2nd AF). Two solid vibration modes, their corresponding acoustic fields, and the two acoustic streaming fields are first computed by the finite element method. Then, the manipulation experiments indicated that the ICF microspheres can be first driven to the center of the 1st AF and then be positioned here with a minimum positional fluctuation of 1.1 μm. By changing to the 2nd AF, the positioned microsphere can be transferred nearly 11 mm to the nearest antinode from the acoustic field center. Finally, based on the proposed ultrasonic manipulation method, the detection experiments of the ICF microsphere were carried out, illustrating that the positioning of the 1st AF meets the requirements of the morphology detection and the radius measurement of the ICF microsphere. The proposed method holds the advantages of non-destructive, high-precision, simple control scheme and meets the practical application needs of the microsphere fixed-point detection, presenting the potential promise for the field of microsphere detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.