Abstract

This paper presents methodologies and technologies for ultrasonic localization and pose tracking of an autonomous mobile robot (AMR) by using a fuzzy adaptive extended information filtering (FAEIF) scheme. A novel ultrasonic localization system, which consists of two ultrasonic transmitters and three receivers, is proposed to estimate both the static and the dynamic position and orientation of the AMR. FAEIF is presented to improve estimation accuracy and robustness for the proposed localization system, while the system lacks sufficient information of complete models or the process and measurement noise varies with time. Static pose estimation that utilizes the averaging approach is also investigated. Six time-of-flight ultrasonic measurements, together with the vehicle's dead-reckoned localization information, are merged to update the vehicle's pose by utilizing the FAEIF sensor fusion algorithm. The proposed algorithms were implemented using an industrial personal computer with a computation speed of 800 MHz and standard C++ programming techniques. The system prototype, together with computer simulations and experimental results, was used to confirm that the system not only provides precise estimation of both the static and dynamic pose of the AMR but also provides a simple economical structure for navigational use and installation/calibration..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.