Abstract

The change in ultrasonic nonlinear property of a titanium alloy subjected to cyclic loading has been studied, with an objective to develop a new characterization methodology for quantifying the level of damage in the material undergoing fatigue. In order to determine the degree of nonlinearity, the ultrasonic second harmonic generation technique has been used. The second harmonic signal was monitored during the fatigue process, and a substantial increase in the second harmonic amplitude (180% increase in nonlinear factor) was observed. This indicates that the second harmonic signal is very sensitive to the microstructural changes in the material caused by fatigue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.