Abstract
Optically isotropic media which are susceptible to acoustically induced birefringence can be used as acousto- optic polarization converters. A comparative study between fused silica and dense flint shows that at normal light incidence 52% of the light can be converted from linear to circular in the case of fused silica and only 20% in the case of dense flint. In each case the conversion appears at moderate sound amplitudes and at frequencies which are typical for the intermediate regime of diffraction. Applying oblique light incidence, most interesting effects can be obtained with fused silica at high sound frequencies which are typical for the Bragg regime of diffraction and in the neighborhood of the Bragg angle. The possibility is shown to use an AO cell fabricated of fused silica as a laser-beam splitter, converting a linearly polarized beam of light partially into a circularly polarized beam and a linearly polarized beam, the light intensity of the two beams being equal. In addition, it is seen that the temporal light intensity modulations which can be observed in the near field of the light diffracted under these specific conditions, can be understood from the polarization changes taking place.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.