Abstract

The interaction of supersonic jets with external acoustic waves is investigated in connection with the emission of sound of discrete frequency by the jets. A plausible physical scheme explaining the appearance and maintenance of the oscillations of supersonic jets with discrete frequency was proposed in [1]. A model problem of the effect of pressure perturbations of a given frequency, traveling along the surface of a two-dimensional jet is also investigated there. The results of the solution of this problem (in particular, the presence of critical frequencies at which the perturbations in the jet grow indefinitely in the direction of motion of the flow) substantiate the hypothesis that by virtue of its periodic (cellular) structure a supersonic jet has the properties of a resonator. In [1] the more general problem of interaction of a supersonic jet with an external acoustic field is also formulated, which is in complete correspondence with the physical scheme of the phenomena developed in that article. In the present work this problem is solved in its complete form for plane and cylindrical jets for symmetric and antisymmetric perturbations in an external acoustic field, and also in the presence of subsonic accompanying flow in the outer medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call