Abstract
Knowledge of the mechanical properties and stability of thin film structures is important for device operation. Potential failures related to crack initiation and growth must be identified early, to enable healing through e.g. annealing. Here, three square suspended membranes, formed from a thin layer of cubic silicon carbide (3C-SiC) or germanium (Ge) on a silicon substrate, were characterised by their response to ultrasonic excitation. The resonant frequencies and mode shapes were measured during thermal cycling over a temperature range of 20–100 °C. The influence of temperature on the stress was explored by comparison with predictions from a model of thermal expansion of the combined membrane and substrate. For an ideal, non-cracked sample the stress and Q-factor behaved as predicted. In contrast, for a 3C-SiC and a Ge membrane that had undergone vibration and thermal cycling to simulate extended use, measurements of the stress and Q-factor showed the presence of damage, with the 3C-SiC membrane subsequently breaking. However, the damaged Ge sample showed an improvement to the resonant behaviour on subsequent heating. Scanning electron microscopy showed that this was due to a self-healing of sub-micrometer cracks, caused by expansion of the germanium layer to form bridges over the cracked regions, with the effect also observable in the ultrasonic inspection. [2020-0017]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.