Abstract
An ultrasonic imaging system is described by using a leaky surface acoustic wave (SAW) transducer composed of a piezoelectric ceramic thin plate/interdigital transducer/fused quartz. It is shown, both numerically and experimentally, that three operation modes of the transducer at a water-solid interface are available. Each of the three modes has a different operation frequency range, corresponding to the leaky SAW velocity. The bulk wave in water as an acoustical coupler between the transducer and a tested object has a frequency-dependent angle relation; therefore, the acoustic beam steering is easily controlled and flexible in design. The reflection type of C-mode ultrasonic imaging results are demonstrated and are promising for nondestructive testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.