Abstract

Air-coupled ultrasonic capacitance transducers operating at frequencies of up to 1 MHz have been employed in a fan-beam configuration for the cross-sectional tomographic imaging of temperature fields and flow fields in air, and the location of solid objects. Separate transmitter and receiver transducers were manufactured using thin polymer dielectric membranes and polished metal backplates, and used to acquire through-transmission data. The fan-beam reconstruction was developed in LabVIEW ® using a re-bin routine combined with a filtered backprojection algorithm and a difference technique to generate the cross-sectional images. The system was first used to reconstruct images showing the locations of solid objects positioned within the scanned region through interpretation of the arrival time of the transmitted ultrasound. The technique was then extended to image the temperature fields produced in air above a small heat source and the flow field produced by a nozzle connected to a regulated compressed air source. Reconstructed temperatures were within 4% of the measured background air temperature and 9% of the air temperature measured above the heat source. Reconstructed images of the flow field above a small nozzle were also presented, showing that the horizontal component of the flow velocity could be resolved using this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call