Abstract

Mesoporous TiO2 microspheres with a combination of large surface and high crystallinity were fabricated by an ultrasonic-hydrothermal method with Octadecylamine as a structure-directing agent and tetrabutyl titanate as a precursor. The mesoporous materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption–desorption measurements, and UV–visible diffuse reflectance spectroscopy (UV-vis). Low-angle XRD and TEM images indicated that the disordered wormhole-like mesoporous architecture of TiO2 microspheres with diameters of about 200-400 nm were actually formed by agglomerization of nanoparticles with an average size of about 10nm. The analysis from N2 adsorption–desorption isotherms showed that the surface area of mesoporous sample was 204.7 m2g-1, with a pore size of 4.3 nm and pore volume of 0.263 cm3g-1 after calcined at 673 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.