Abstract

An experimental study of the buoyancy-induced flow in a model of a Czochralski crystal growth system was conducted. Ultrasonic velocimetry was used to measure fluid velocities. To approach the thermal boundary conditions in an industrial growth facility, a double-walled glass crucible, which is flown through by a heating fluid, was chosen to hold the fluid. Similarity of the heat transfer conditions was achieved by selecting a liquid metal as the fluid under investigation, which was the ternary alloy GaInSn having a Prandtl number of 0.021. Because of the double-walled crucible, measurements through the container wall are difficult if ever possible. Since the availability of relatively short ultrasonic transducers it is practicable to have the sensor immersed into the fluid. Measurements of the radial velocity component shortly below the melt surface across the entire diameter of the crucible at various azimuthal angles reveal the complex flow structure of natural convection in a Czochralski crucible. As it is not to be expected to grow high quality mono-crystalline crystals from such a non-axisymmetric flow, rotating magnetic fields (RMF) are often proposed to render the flow more axisymmetric. This paper also addresses the question what happens to the buoyancy-driven flow when such an RMF is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.