Abstract

Abstract This paper describes an experimental nondestructive technique for fatigue damage assessment in metal matrix composites by measuring ultrasonic phase velocity and attenuation. A [0/90] SiC/Ti15V3Cr3Al3Sn metal matrix composite is considered as a model system. Cyclic loading at 50 and 70% of the ultimate sample strength were used until failure. The ultrasonic phase velocities and attenuations were measured periodically and found to be very sensitive to fatigue damage. The fatigue-induced changes in the composite elastic constants were calculated from the measured ultrasonic velocity data. For samples heat treated prior to fatigue (815°C) above the matrix β transus (about 760°C), the dominant damage mechanism is debonding of the fiber/matrix interface. We found that when samples were fatigued for less than 50% of the lifetime, the reduction of the composite moduli was linearly dependent on the number of fatigue cycles, which is explained by extension of interfacial partial debonds. This was supported by micromechanical analysis based on a partial disbond model. The rate of decrease in the composite moduli in the second half of the fatigue life was found to be lower, which may serve as a basis for estimation of the remaining fatigue life of the composite from ultrasonic velocity and attenuation measurements. The attenuation data was obtained in directions perpendicular to the fiber. A single-fiber scattering model has been used to explain the effect of the fiber/matrix interface on attenuation. Good correlation between attenuation and moduli measurements was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.