Abstract

Different ultrasonic devices including ultrasonic bath with dual frequency, sonoreactor and ultrasonic probe, were tested for their viability in the sample treatment for polymer characterization by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The effect of sonication frequency (35 kHz, 40 kHz and 130 kHz), sonication amplitude, and sonication time on the polymer's number-average molecular weight ( M n) and weight-average molecular weight ( M w) were investigated. The effect of those variables in the molecular mass distribution of three polymer standards, poly(styrene) 2000 Da and 10,000 Da and poly(ethylene glycol) 1000 Da, was evaluated. In addition, the influence of ultrasonic energy on the sample treatment as a function of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) matrix was also studied through two common standard matrices, dithranol and 2,5-dihydroxybenzoic acid. The results obtained show that the ultrasonic bath at 35 kHz is the best option for the purpose of fast sample treatment for polymer characterization. The M n and M w values obtained for this ultrasonic device and for the three polymers tested using dithranol as MALDI matrix, were not statistically different from the ones acquired with vortex mixing and also were in concordance with the values recommended by the polymer manufacturers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.