Abstract

Ultrasonically assisted gas tungsten arc based wire additive manufacturing (UA-GTAAM) of TiB2 nanoparticle-reinforced AA7075 aluminum metal matrix nanocomposite (MMNC) was conducted with the UA probe directly immersed in the molten pool. This work focuses on the UA effects with different probe positions on the UA-melt interactions and the resulting microstructure. In situ high-speed imaging reveals melt pool surface ripples induced by UA. More refined surface ripples, corresponding to a faster melt flow, are observed with the UA probe immersed deeper into the melt. This condition also leads to a lighter etched color under optical microscope, which is related to a more homogeneous microstructure with less eutectic phase at grain boundaries. Electron backscatter diffraction (EBSD) analysis was employed for grain orientation and nanoparticle distributions, where the lower Confidence Index (CI) served as an indicator for intragranular nanoparticle segregation. The EBSD results show a strong (110) texture in the conventional WAAM builds. High-resolution backscattered electron (BSE) imaging reveals nanoparticles tend to segregate into preferred (001) and (111) grains. UA suppresses the epitaxial growth of (110) grains and promotes a more randomly orientated microstructure. Accordingly, more (001) and (111) grains are available to accommodate nanoparticles and promote a more homogeneous dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.