Abstract
Specific features of the acousto-optic diffraction of Bessel light beams propagating in the vicinity of the optical axis of a uniaxial gyrotropic crystal have been investigated. The dependences of the diffraction efficiency on the acousto-optic interaction length, ultrasound power, and polarization state of the incident Bessel light beam have been analyzed using the coupled-wave equations and the overlap-integral method. It is shown that polarization-independent diffraction of Bessel light beams is observed in paratellurite crystals, when the Bragg diffraction efficiency is independent of the polarization state of the incident beam. The physical reason for this diffraction has been established (both theoretically and experimentally) to be simultaneous implementation of two processes of anisotropic scattering, at which the Bragg synchronism conditions are satisfied for orthogonal polarized Bessel beams with elliptical polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.