Abstract

In this research work, we investigated the ability of the oxidative degradation of 2, 4-Dichlorophenoxy acetic acid herbicide via ultrasonic-assisted in electro-activation of the persulfate system in the presence of nano-zero valent iron. The effect of experimental parameters such as pH value [4-8], electrical current (0.5-1 A), persulfate concentration (0.25-0.5mg.l-1), nano zero-valent iron dose (0.05-0.1mg.l-1), and initial organic pollutant concentration (50-100mg.l-1) on the ultrasonic-electropersulfate process performance was assessed via central composite design. The combination of ultrasonic waves with the electrochemical process to activation of persulfate showed better efficiency into 2, 4-Dichlorophenoxy acetic acid herbicide degradation compared to their implementation in individual and binary systems. Following optimal conditions (pH = 5.62, 0.80 A applied electrical current, 0.39mg/L persulfate concentration, 0.07mg/L nano-zero valent iron, and 50mg/L 2,4-Dichlorophenoxy acetic acid concentration in 40min reaction), nearly 91% removal was done. Moreover, the complete removal of 2, 4-Dichlorophenoxy acetic acid, 92% COD, and 88% TOC removal was achieved by this process near 140min reaction. The scavenging experiment confirmed the role of free oxidizing species in the degradation of 2, 4-Dichlorophenoxy acetic acid during the process. Approximately 50% improved 2, 4-Dichlorophenoxy acetic acid removal in the process against the inclusive efficiency of single mechanisms. The obtained results were fitted to the pseudo-first-order kinetic model with a high correlation coefficient (R2 = 0.96). Five important intermediate products of 2, 4-D oxidation were 2, 4-dichlorophenol (2, 4-DCP), 2, 6-dichlorophenol (2, 6-DCP), 4, 6 dichlororesorcinol (4, 6-DCR), 2-chlorohydroquinone (2-CHQ), and 2-chloro-1, 4-benzoquinone (2-CBQ). In the end, can be employed as a satisfactory advanced oxidation process in high mineralization of 2, 4-D and refractory organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call