Abstract

Shrinkage microporosity in cast aluminum was characterized utilizing the frequency dependence of ultrasonic attenuation caused by scattering from the pores. Measurements were made with the plate specimen immersed in water, and, by using a focused transducer, spatial resolution of about 2 mm was obtained. An accurate measure of attenuation was obtained by comparing the specimen’s ultrasonic signal with that from a pore-free reference specimen. Although the attenuation could be fitted using a single spherical pore size, better fits were obtained by assuming a lognormal distribution of spheres. Pore volume fraction inferred from the lognormal fits overestimates the actual volume fraction, determined from density measurements, by the same factor for all volume fractions. The actual volume fraction is overestimated by more than 100%, due to the complicated, nonspherical pore shapes, and must be taken into account to obtain accurate values of porosity. The strong correlation ( r 2=0.97) between ultrasonic and density-derived volume fractions permits reliable, nondestructive laboratory measurements of porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.