Abstract

Abstract With the aim of surgical success, the evaluation of dental implant long-term stability is an important task for dentists. About that, the complexity of the newly formed bone and the complex boundary conditions at the bone-implant interface induce the main difficulties. In this context, for the quantitative evaluation of primary and secondary stabilities of dental implants, ultrasound based techniques have already been proven to be effective. The microstructure, the mechanical properties and the geometry of the bone-implant system affect the ultrasonic response. The aim of this work is to extract relevant information about primary stability from the complex ultrasonic signal obtained from a probe screwed to the implant. To do this, signal processing based on multiscale analysis has been used. The comparison between experimental and numerical results has been carried out, and a correlation has been observed between the multifractal signature and the stability. Furthermore, a sensitivity study has shown that the variation of certain parameters (i.e. central frequency and trabecular bone density) does not lead to a change in the response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.