Abstract

A Fe-based amorphous/nanocrystalline coating was prepared on the AISI 321 steel by the high-velocity oxygen-fuel (HVOF) thermal spraying technology in this paper. Cavitation erosion behavior and mechanism of the coating was studied through the analysis of curves for cavitation erosion resistance versus time and the observation of eroded particles, with the AISI 321 steel as a reference. It was found that the Fe-based coating had better cavitation erosion resistance than the AISI 321 steel, and exhibited obvious periodic failure behavior in the cavitation erosion process. Besides, the crystallization of the amorphous phase under the effect of shock wave was observed. The cavitation erosion mathematic model of the coating was also established. The model indicated that the cavitation erosion resistance of the coating was related to the grain size and the fracture energy per unit area of the coating. Small grain size and high fracture energy per unit area were benefit to improve the cavitation erosion resistance of the Fe-based coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.