Abstract

From the perspective of calculating ultrasonic absorption and scattering properties of individual solid particle and droplet, the ultrasonic wave is treated as discrete phonons. And by tracking their motion process and event statistics, a new prediction model of ultrasonic attenuation of spherical mixed particles in gaseous medium is established with Monte Carlo method. Considering the difference in physical properties between solid particles and liquid particles, the ultrasonic absorption characteristics of the two kinds of particles are obviously different, and when dimensionless particle size <i>kR</i> ≤ 1, the backscattering of particles is uniform and dominant, then the ultrasonic scattering pressures gradually transit from the dominant position of backscattering to the trend of forward enhancement with the increase of dimensionless particle size. The numerical simulation results for the system with a single particle type are compared with those from various standard models such as classical ECAH model and McC model, showing that they are in good agreement. Similarly, the results are then compared with experimental results, which accord with each other in general. After calculating and verifying the ultrasonic attenuation of aluminum particles and submicron droplets respectively in air, the method is extended to the three-phase monodisperse and polydisperse mixed particle system composed of aluminum particles and liquid droplets. In the three-phase system of gas-liquid-solid mixed particles, the particle type has a significant influence on ultrasonic attenuation, and the attenuation contribution of different particles against mixing ratio does not follow the linear gradient with the increase of volume concentration. For a polydisperse system, the ultrasonic attenuation spectrum is greatly affected by the average particle size, but it is insensitive to the width of particle size distribution. The numerical results also show that both the particle type and particle distribution size should be carefully take into account in the polydisperse system. Moreover, the MCM model can be further extended to non-spherical particles and combined with mathematical inversion to form the theoretical basis for the measurement of mixed particle system.

Highlights

  • 从单个固体和液滴颗粒的声吸收和散射特性计算入手,基于概率统 计的蒙特卡罗方法(MCM),将声波以离散化的声子加以处理,通过追踪 其运动历程并进行事件统计,建立一种气体介质中球形混合颗粒的声衰 减预测模型.对空气中铝粉颗粒和亚微米级水滴的声衰减分别计算和验 证后,将模型推广至含有混合颗粒的三相体系,对铝粉和液滴构成的单、 多分散混合颗粒体系进行数值研究.结果表明:两类颗粒的声吸收特性 差异明显,其散射声压均随颗粒无因次尺寸 kR 的增加呈现从后向散射占 主要地位逐渐过渡到前向增强的趋势.气液固混合颗粒三相体系中,颗 粒类型对于声衰减影响明显、且随浓度的增加不同颗粒的衰减贡献不再 遵循随混合比的线性递变关系;对于多分散体系而言,声衰减谱受平均 粒径影响较大,对于粒径分布宽度参数则不敏感.模型可进一步结合数 学反演形成混合颗粒体系测量的理论基础. 关键词:蒙特卡罗法,混合颗粒三相体系,多分散,声衰减 PACS:43.35.Ae, 02.70.Uu

  • Model validation and the sensitivity of physical parameters (a) ultrasonic attenuation coefficient varies with the particle radius; (b) ultrasonic attenuation coefficient varies with the particle parameters

  • Comparison with experimental results (a) aluminum particle; (b) droplet (R1 and R2 are droplet radius measured by image and ultrasonic method in the reference respectively)

Read more

Summary

Introduction

从单个固体和液滴颗粒的声吸收和散射特性计算入手,基于概率统 计的蒙特卡罗方法(MCM),将声波以离散化的声子加以处理,通过追踪 其运动历程并进行事件统计,建立一种气体介质中球形混合颗粒的声衰 减预测模型.对空气中铝粉颗粒和亚微米级水滴的声衰减分别计算和验 证后,将模型推广至含有混合颗粒的三相体系,对铝粉和液滴构成的单、 多分散混合颗粒体系进行数值研究.结果表明:两类颗粒的声吸收特性 差异明显,其散射声压均随颗粒无因次尺寸 kR 的增加呈现从后向散射占 主要地位逐渐过渡到前向增强的趋势.气液固混合颗粒三相体系中,颗 粒类型对于声衰减影响明显、且随浓度的增加不同颗粒的衰减贡献不再 遵循随混合比的线性递变关系;对于多分散体系而言,声衰减谱受平均 粒径影响较大,对于粒径分布宽度参数则不敏感.模型可进一步结合数 学反演形成混合颗粒体系测量的理论基础. 关键词:蒙特卡罗法,混合颗粒三相体系,多分散,声衰减 PACS:43.35.Ae, 02.70.Uu. 粒)[1]、电力行业脱硫塔内气(空气)液(雾)固(烟尘)[2]、化工行业气液固三相反应器 内[3,4]、环境问题中气(空气)液(雾)固(霾)[5]等三相体系.气液固三相颗粒体系中颗 像法[3]、层析成像法[4]、光散射法[5]等测量方法已得到学者关注,而超声衰减法具 声衰减和声阻抗等.针对两相流颗粒体系中声衰减特性的研究,Epstein 和 Carhart 等[6,7]建立 ECAH(Epstein-Carhart-Allegra-Hawley)模型,同时考虑液体介质的黏性、 颗粒的弹性效应、热传导等作用,根据质量、动量和能量守恒定律,通过求解球 坐标下的波动方程得到散射系数,奠定了超声波衰减理论模型的基础.之后, McClements[8,9,10]提出了“长波长”条件下声衰减与声速计算理论模型(McC 模型), 引入黏性厚度和热厚度两个参数,简化声衰减模型,研究了超声吸收衰减效应和 长波长区的声衰减特性,并进行了实验验证.近年来,Parker 等[11]、Liu 等[12]研 究了纳米颗粒悬浊液的声衰减,对颗粒体系进行测量和表征.董黎丽等[13]建立了 乳浊液的声衰减反演模型,研究了多分散脂肪乳浊液的粒径分布测量问题.Wang 等[14,15]建立了耦合相修正模型,计算了空气介质中固体颗粒的声衰减.杜娜等[16] 建立了水中气泡的声散射模型,研究了有黏条件下气泡的声学特性.侯森等[17] 建立了声衰减反演气泡分布模型.陈时等[18]建立了含混合气泡液体中的声传播模 型.郭盼盼等[19-21]建立了蒙特卡罗原理的声衰减计算模型,应用于液固两相、液 液两相单分散和多分散体系的声衰减谱预测.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call