Abstract

Colloidal zinc telluride (ZnTe) nanostructures were successfully processed through a simple and facile ultrasonic (sonochemical) treatment for photoelectronic applications. The particle-like morphological features, phase and nature of valence state of various metal ions existing in ZnTe were examined using electron and X-ray photoelectron spectroscopic tools. Raman spectroscopic measurements revealed the dominance of exciton-phonon coupling and occurrence of TeO2 traces in ZnTe through the corresponding vibrations. Optical bandgap of the ZnTe suspension was estimated to be around 2.15eV, authenticating the direct allowed transitions. The p-type electrical conductivity and charge carrier density of ZnTe were additionally estimated from the Bode, Nyquist and Mott-Schottky type impedance plots. The photoelectrical properties of ZnTe were investigated by fabricating p-ZnTe/n-Si heterostructures and studying their corresponding current-voltage characteristics under dark and white light illumination. The diodes revealed excellent rectifying behaviour with significant increase in reverse current under illumination. The stability of the devices were also affirmed through the time-dependent photoresponse characteristics, which actually suggested the improved and effective separation of photo generated electron hole pairs across the integrated heterojunctions. The obtained results also augment the potential of sonochemically processed ZnTe for application in photo detection and sensor related functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.