Abstract

Ce doped ZnTiO3 as a novel catalyst with highly efficient and stable sonocatalytic activity was synthesized via an ultrasound-assisted sol–gel method using non-ionic surfactant Pluronic F127 as structure directing agent. Synthesized samples were characterized by using various techniques, such as XRD, TEM, SEM, EDX, ​XRF, BET, DRS, and PL, and their sonocatalytic activity studied toward degradation of p-Nitrophenol as a model organic compound. The synthesized mesoporous Ce/ZnTiO3 had mixed cubic–hexagonal phase with large surface area (118.2 m2 g–1) and narrow pore size distribution (4.9nm). The effects of cerium concentration, calcination temperature, and calcination time on the structure and the sonocatalytic activity of Ce/ZnTiO3 were studied in detail. XRD results were suggested that the relation between the phase structure and the catalytic activity is considerable. Significant decrease in band-gap and PL intensity was observed with increasing the cerium concentration in the ZnTiO3. It became clear that the Ce/ZnTiO3 (0.81mol%) shows high sonocatalytic activity compared with pure ZnTiO3 and other Ce/ZnTiO3 samples as well as commercial TiO2-P25. The possible mechanism for the enhanced sonocatalytic activity of Ce/ZnTiO3 was discussed in details. The electrical energy consumption was also considered during sonocatalytic experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.