Abstract

The nanorods of a new Pb(II)-chloride metal-organic coordination polymer, [Pb2Cl2Q2]n(1)(HQ= 8-hydroxyquinoline) was synthesized using the sonochemical synthesis. The characteristics of the compound were determined via the elemental analysis, single-crystal X-ray analysis, scanning electron microscopy (SEM), IR spectroscopy, and powder X-ray diffraction (PXRD). The X-ray structure indicated that the compound included a 2-dimensional polymer in the solid-state with two different centers of Pb(II). Two coordination numbers (6 and 7) with two coordination spheres (symmetrical and unsymmetrical) were observed for the lead (II) centers. The structure showed a self-assembly capability with several weak interactions, such as H-bonds and π–π interactions. Sonochemical results showed the uniform, rod-like morphology of the title compound. The computational DFT results demonstrated that the HOMO (highest occupied molecular orbital) was confined primarily between one Cl– anion and Pb centers, whereas the LUMO (lowest unoccupied molecular orbital) was roughly delocalized on the Q− ligand N and O atoms comprising the other Cl– anions. The estimated gap of HOMO–LUMO was 3.708 eV and the composite was highly shock-sensitive. The α-PbO nanostructures were produced by thermolysis of 1 at 180 °C via oleic acid as a surfactant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.