Abstract

Machinability, along with its associated facets, is a critical parameter that ultimately determines the cost of machining. Its optimization, however, is inherently limited by the current technology. To surmount such limitations, novel alternative machining technologies, such as Ultrasonic Assisted Machining (UAM), have emerged. The present study introduces UAM, the technology’s underlying principles, and general considerations for vibration application (harmonic waves, eigenfrequencies, resonance). The influence of ultrasonic application on the key parameters of conventional machining processes is studied and relevant research data are presented to support UAM benefits. Following, a comprehensive kinematic examination of vibration application to the milling process is conducted, accounting for various possible vibration modes. A detailed analysis of the requisite system components and their technical specifications is presented, followed by identifying common issues within such systems. Solutions for the identified limitations are proposed, acting as design guidelines for future technological advancements. Finally, based on the conducted research, conclusions are drawn and future directions for UAM are suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call