Abstract

This paper presents a method of producing uniform particle strengthened bonds between pieces of aluminum metal matrix composite (Al-MMCs), of strength equal to that of the substrate material. SiC particle reinforced Zn-based filler metals were fabricated by mechanical stir casting and ultrasonic treatment, and then used to join pieces of SiC p/A356 composite with the aid of ultrasonic vibration. The filler metals made by mechanical stirring were porous and contained many particle clusters. Ultrasonic vibration was used to disperse the agglomerates and prevent further coagulation of SiC particles during joining, but the method failed to eliminate the porosity, resulting in a highly porous bond. The filler metal treated by ultrasonic vibration was free of defects and produced a non-porous bond strengthened with uniform particles between pieces of SiC p/A356 composite. The presence of surface oxide films at the bonding interface significantly degraded the performance of SiC particle reinforced bond. Removal of this oxide film by at least 4 s of ultrasonic vibration significantly increased the bond strength, reaching a value equal to that of the substrate metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.