Abstract

A model of ischemic brain injury in 7-day-old rat pups has been developed to study perinatal ischemia. It combines permanent occlusion of the distal left middle cerebral artery (LMCA) and transient occlusion of homolateral common carotid artery (LCCA). At removal of the clip on LCCA, reflow allowed brain reperfusion through cortical anastomoses. In 10 rat pups, we measured blood flow velocities (BFV) in main cerebral arteries with 12-MHz ultrasound imaging. At basal states, peak systolic BFV in proximal LMCA was 16.0 ± 3.0 cm.s –1. Occlusion of LMCA did not yield significant modifications. Occlusion of LCCA involved only a decrease in BFV to 9.5 ± 2.6 cm.s –1 ( p < 0.001). Indeed, LMCA was then supply by the right internal carotid and the vertebral arteries through the circle of Willis. In three rat pups, release of occlusion of LCCA was followed by restoration of BFV in the left internal carotid artery and in LMCA, in seven pups, by a reversed flow in the LICA and lower BFV in LMCA (11.9 ± 2.3, p < 0.05). BFV returned to basal values from h5 to h48 in all animals. In addition, ultrasound imaging is a useful, reproducible, non invasive, easy-to-repeat, method to assess and monitor arterial cerebral blood flow supply in small animals. It helps to characterize changes occurring during cerebral ischemia and reperfusion, particularly the depth of the hypoperfusion, as well as the variability of reflow. In preclinical studies, this method could help to identify what can be assigned to a neuroprotective treatment and what depends on changes in cerebral blood flow supply. (E-mail: philippe.bonnin@lrb.aphp.fr)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.