Abstract

Safe and healthy nutrition has a beneficial effect on human well-being. Various foods, such as berries, are known to inhibit cancer-promoting pre-proliferative signals. Among European fruit and berry crops, raspberries demonstrate one with the widest ranges of biologically active substances. Extraction remains a reliable method of obtaining biologically active substances from plant materials. The research objective was to obtain a semi-finished raspberry product by using microwave and ultrasonic processing and to study its antioxidant, anti-carcinogenic, sensory, physico-chemical, and microbiological properties. The raspberry extracts were obtained by maceration, ultrasound treatment, and microwave processing. After that, the samples underwent a comparative analysis of their antioxidant properties. The ultrasonic method gave the best results. A set of experiments made it possible to define the optimal technological modes for the extraction process: ethanol = 50%, ultrasonic radiation = 35 kHz, temperature = 40 ± 5°C, time = 120 min, water ratio = 1:10. A set of experiments on cell cultures demonstrated that the raspberry extract was able to reduce the expression of the anti-inflammatory COX-2, iNOS, and IL-8 genes. Hense, we recommend further studies of the effect of the raspberry extract on the induced expression of COX-2, iNOS, and IL-8. In addition, its anticarcinogenic properties have to be studied in vivo.

Highlights

  • In many ways, human well-being is associated with safe and healthy food

  • A set of experiments on cell cultures demonstrated that the raspberry extract was able to reduce the expression of the anti-inflammatory cyclooxygenase 2 (COX-2), induced NO synthase (iNOS), and interleukin 8 (IL-8) genes

  • US extraction had a greater impact on the content of phenolic substances and flavonoids, whereas the content of anthocyanins remained almost the same after different types of extraction

Read more

Summary

Introduction

Food safety is often understood as the absence of harmful microorganisms and chemicals, including synthetic additives, while its healthiness is often identified with naturalness and freshness [1]. More and more consumers demand fresh, ready-to-eat, minimally processed foods that contain neither chemical preservatives nor synthetic additives [4]. It is not enough to be a source of energy: modern food has to be functional, e.g. to possess antioxidant or anti-carcinogenic properties. This trend has triggered multiple studies in the field of food processing, as well as an active search for alternative natural supplements with a wide spectrum of physiological properties [5]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.