Abstract

Being a difficult-to-cut material, titanium alloy suffers poor machinability for most cutting process, let alone the drilling of small and deep holes using traditional machining methods. Although electric discharge machining (EDM) is suitable to handle titanium alloys, it is not ideal for small and deep holes due to titanium alloys’ low heating conductivity and high tenacity. This paper introduces ultrasonic vibration into micro-EDM and analyzes the effect of ultrasonic vibration on the EDM process. A four-axis EDM machine tool which combines ultrasonic and micro-EDM has been developed. A wire electric discharge grinding (WEDG) unit which can fabricate a micro-electrode on-line, as well as a measuring unit, is set up on this equipment. With a cylindrical tool electrode, made of hard carbide, which has high stiffness, a single-side notch was made along the electrode. Ultrasonic vibration is then introduced into the micro-EDM. Experiments have been carried out and results have shown that holes with a diameter of less than Ø0.2 mm and a depth/diameter ratio of more than 15 can be drilled steadily using this equipment and technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.