Abstract

Designed as a high‐capacity, high‐rate, and long‐cycle life anode for sodium‐ion batteries, ultrasmall Sn nanoparticles (≈8 nm) homogeneously embedded in spherical carbon network (denoted as 8‐Sn@C) is prepared using an aerosol spray pyrolysis method. Instrumental analyses show that 8‐Sn@C nanocomposite with 46 wt% Sn and a BET surface area of 150.43 m2 g−1 delivers an initial reversible capacity of ≈493.6 mA h g−1 at the current density of 200 mA g−1, a high‐rate capacity of 349 mA h g−1 even at 4000 mA g−1, and a stable capacity of ≈415 mA h g−1 after 500 cycles at 1000 mA g−1. The remarkable electrochemical performance of 8‐Sn@C is owing to the synergetic effects between the well‐dispersed ultrasmall Sn nanoparticles and the conductive carbon network. This unique structure of very‐fine Sn nanoparticles embedded in the porous carbon network can effectively suppress the volume fluctuation and particle aggregation of tin during prolonged sodiation/desodiation process, thus solving the major problems of pulverization, loss of electrical contact and low utilization rate facing Sn anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.