Abstract
No medication has been approved for secondary injuries after traumatic brain injury (TBI). While free radicals are considered a major mediator of secondary injury, conventional antioxidants only have modest clinical efficacy. Here, we synthesized CX201 consisting of core cerium oxide nanoparticles coated with 6-aminocaproic acid and polyvinylpyrrolidone in aqueous phase. CX201 with 3.49 ± 1.11 nm of core and 6.49 ± 0.56 nm of hydrodynamic diameter showed multi-enzymatic antioxidant function. Owing to its excellent physiological stability and cell viability, CX201 had a neuroprotective effect in vitro. In a TBI animal model, an investigator-blinded randomized experiment showed a single intravenously injected CX201 significantly improved functional recovery compared to the control. CX201 reduced lipid peroxidation and inflammatory cell recruitment at the damaged brain. These suggest ultrasmall CX201 can efficiently reduce secondary brain injuries after TBI. Given the absence of current therapies, CX201 may be proposed as a novel therapeutic strategy for TBI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.