Abstract

Nanoparticle-polymer composites exhibit unusual mechanical properties and chain dynamics when the nanoparticle size is smaller than the entanglement mesh size of the matrix polymer chains, corresponding to the ultrasmall regime defined by de Gennes. However, the mechanism is still ambiguous due to the lack of suitable model systems. Here, we develop an ultrasmall nanoparticle system by using a bimodal grafting strategy to graft both short alkyl chains and long polystyrene chains onto the polyoxometalate molecular nanoparticles with a tunable repulsive potential between the nanoparticles, thus facilitating their uniform dispersion in polystyrene matrices. Linear viscoelasticity of the resultant nanocomposites changes with increasing the filler content, which shows a decrease in both plateau modulus and terminal relaxation time, indicative of a dilution effect of the nanoparticles. Namely, the entanglement network becomes sparser with increasing the filler content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.