Abstract

Ultrasmall molybdenum carbide (MoC) nanocrystals coupled with reduced graphene oxide (RGO) hybrid was successfully synthesized and applied as support for Pt nanoparticles (Pt/MoC-RGO). Compare to the commercial Pt/C, the Pt/MoC-RGO catalyst show remarkable enhanced electrocatalytic activity for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). The peak current density of Pt/MoC-RGO is 2.4 times of Pt/C. The Pt/MoC-RGO also shows a significant improved CO resistance ability, which likely originates from the abundant Pt-MoC-RGO three-phase interfaces in Pt/MoC-RGO. The long-term stability results show that the electrochemical durability of the Pt/MoC-RGO for MOR is much better than Pt/C, making it a promising next generation electrocatalysts in DMFCs. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses reveal the strong synergetic chemical coupling interaction between the Pt nanoparticles and MoC-RGO, which result in significantly enhanced electrocatalytic activity for MOR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call