Abstract

Enzymes that can convert chemical energy into mechanical force through biocatalysis have been used as engines for artificial micro/nanomotors. However, most nanomotors are powered by only one engine and have a microscale size range, which greatly limits their application scenarios. Herein, an ultrasmall enzyme/light-powered nanomotor (71.1 ± 8.2 nm) is prepared by directly coupling ultrasmall histidine-modified Fe3O4 nanoparticles (UHFe3O4 NPs, 2.71 ± 0.54 nm) with cholesterol oxidase (ChOx) for cholesterol detection. The chemical engine, ChOx, catalyzes the oxidation of cholesterol to actuate UHFe3O4@ChOx and produce H2O2. Meanwhile, UHFe3O4 NPs that possess peroxidase-mimicking property and photothermal effect act as a nanozyme to catalyze the subsequent chromogenic reaction between H2O2 and 3,3′,5,5′-tetramethylbenzidine for cholesterol detection and simultaneously serve as a photothermal engine power by near-infrared (NIR) irradiation. The nanomotor behavior of UHFe3O4@ChOx results in an enhancement (55%) of ChOx catalytic efficiency. Moreover, due to the outstanding peroxidase-mimicking activity and cascade reaction, UHFe3O4@ChOx works as a cholesterol sensor with improved sensitivity and shortened analysis time; as low as 0.178 μM of cholesterol is detected with a linear response range of 2 to 100 μM. Taken together, the new conceptual synthetic strategy of enzymatic hybrid nanomotor is proven promising for sensing and biocatalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call