Abstract

Day-night photocatalysts that can persistently generate reactive oxygen species (ROS) after ceasing light attracted intensive attention in diverse fields. However, current strategies of combining a photocatalyst and an energy storage material can hardly fulfill the demands, especially in size. We herein present a one-phase sub-5 nm day-night photocatalyst via simply doping Nd, Tm, or Er into YVO4:Eu3+ nanoparticles, efficiently producing ROS in both day and night modes. We demonstrate that the rare earth ions acted as a ROS generator, and Eu3+ and defects contributed to the long persistency. Furthermore, the ultrasmall size led to remarkable bacterial uptake and bactericidal efficacy. Our finding suggests an alternative mechanism of day-night photocatalysts that could be ultrasmall and thus may shed light on disinfection and other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.