Abstract

Encapsulating ultrasmall Cu nanoparticles inside Zr-MOFs to form core-shell architecture is very challenging but of interest for CO2 reduction. We report for the first time the incorporation of ultrasmall Cu NCs into a series of benchmark Zr-MOFs, without Cu NCs aggregation, via a scalable room temperature fabrication approach. The Cu NCs@MOFs core-shell composites show much enhanced reactivity in comparison to the Cu NCs confined in the pore of MOFs, regardless of their very similar intrinsic properties at the atomic level. Moreover, introducing polar groups on the MOF structure can further improve both the catalytic reactivity and selectivity. Mechanistic investigation reveals that the CuI sites located at the interface between Cu NCs and support serve as the active sites and efficiently catalyze CO2 photoreduction. This synergetic effect may pave the way for the design of low-cost and efficient catalysts for CO2 photoreduction into high-value chemical feedstock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.