Abstract

Free electron laser (FEL) is capable of producing ultra-short X-ray pulses. The estimation of X-ray pulse propagation is the key process of X-ray FEL beamline design. By using the Kostenbauder matrix approach, the evolution of an ultra-short pulse in a beamline system can be calculated. Therefore, it is of significant importance to investigate the Kostenbauder matrices of different kinds of X-ray optics. In this work, we derive a unified 6 × 6 optical matrix to describe various kinds of X-ray optical elements, including varied-line-spacing (VLS) toroidal grating, VLS spherical grating, VLS cylindrical grating, VLS plane grating, toroidal grating, spherical grating, cylindrical grating, plane grating, toroidal mirror, spherical mirror, cylindrical mirror, and plane mirror. These optics are usually adopted in soft X-ray regime. We apply this method to describe the transverse focusing, pulse front tilt, and pulse stretching after an X-ray pulse going through a VLS plane grating monochromator (VLS-PGM). We also use this approach to simulate a grating compressor which can be used to compress chirped soft X-ray pulse. This work is helpful in the design and optimization of X-ray beamline systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call