Abstract

To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin–orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin–orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.